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Nonadiabatic effects in a self-consistent Hartree model for electrons under an ac electric field 
in multiple quantum wells 

Danhong Huang and D. A. Cardimona 
Air Force Research Laboratory (AFRO/VSSS), 3550 Aberdeen Avenue SE, Building 426, Kirtland Air Force Base, New Mexico 87117 
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By deriving a dynamical differential equation for the electron distribution function in the presence of a 
nonadiabatic sequential-tunneling current under an ac electric field through a multiple-quantum-well system, 
the self-consistent Hartree model is generalized for the calculation of electronic states with the inclusion of 
nonadiabatic effects (dependence on the time derivative of the applied ac electric field) in quantum wells. The 
influences of different doping profiles, temperatures, and amplitudes of an applied ac electric field on the 
electron distribution function and sequential tunneling are studied. This work provides a fully quantum- 
mechanical explanation to the previously proposed current-surge model to a leading-order approximation. 

DOI: 10.1103/PhysRevB.67.245306 PACS number(s): 73.40.Gk, 73.21 Jg, 73.40.Kp 

I. INTRODUCTION 

Recently, transient transport properties of semiconductor 
quantum wells,1-3 superlattices4'5 and quantum dots6 have 
been a subject of interest Various nonlinear properties hav- 
ing their origin in the Coulomb interaction have attracted a 
great deal of attention.3'7-10 Self-sustained current oscilla- 
tions and multistability have been predicted in tunneling cur- 
rents through doped semiconductor superlattices and mul- 
tiple quantum wells (MQW's).7 They are attributed to the 
dynamics of domain, walls separating the electric-field do- 
mains. In addition, oscillations in the sequential-tunneling 
current have been predicted in MQW's, even in the absence 
of electric-field domains due to nonadiabatic effects.10 The 
nonadiabatic effects discussed in this paper are associated 
with the fact that a transient conduction current depends not 
only on an electric field but also on its time derivative due to 
quantum-well capacitive coupling. The quantum-well capaci- 
tance is of the order of picofarads. However, the resistance of 
the MQW sample with a thick barrier between the wells used 
in this study is of the order of teraohms due to the extremely 
small sequential-tunneling current. As a result, the nonadia- 
batic effect occurs on a time scale of seconds, which makes 
electron tunneling depend on the time derivative of the ap- 
plied electric field in addition to the field itself for low ac 
frequencies of the order of a few hertz.11'12 

In this paper, we consider the sequential-tunneling trans- 
port of electrons in an MQW system in the presence of an 
applied ac electric field. We assume that the lattice tempera- 
ture is kept constant and the electrons are in thermal equilib- 
rium with the lattice, so that the electron temperature is the 
same as that of the lattice. The sequential tunneling of elec- 
trons (of the order of nanoseconds) through a thick barrier 
between adjacent quantum wells in an MQW system is a 
very slow process as compared to the coherent tunneling of 
electrons (of the order of sub-picoseconds) through a thin 
barrier in a superlattice system. However, electrons during 
the sequential-tunneling process still "see" an instantaneous 
electric field because of rt<2irlü for low ac frequency £1 
(of the order of a few hertz) with r, being the sequential- 
tunneling time (of the order of nanoseconds). 

Adiabatic electrons in an MQW system with an applied ac 
electric field stay in the equilibrium states with a constant 
Fermi level, since Te<rt, with re being the energy- 
relaxation time due to the very-long sequential-tunneling 
time within which an equilibrium state can be established by • 
the much faster inelastic scattering of electrons inside the 
quantum well. However, the electron density can vary with 
time if the electrons in the quantum well stay in the nona- 
diabatic state.10'13'14 For the nonadiabatic state, the nonadia- 
batic effects cause the Fermi level in the "equilibrium" state 
to shake with time under an ac electric field. As a result, a 
charge-density fluctuation in the quantum well will modify 
the Hartree potential in the surrounding barrier region, and 
thus greatly affect the sequential tunneling of electrons 
through the barrier. Simultaneously, the charge-density fluc- 
tuation also modifies the electronic states in the quantum 
well within the self-consistent Hartree model.15 

For the quantum-well sample considered in this study, the 
second-subband edge is 83.4 meV above the first-subband 
edge (see Table I), while the Fermi level is only 14.2 meV 
above the first-subband edge (see Table II). As a result, the 
second subband is completely unpopulated at temperatures 
below 40 K. Therefore, we have neglected the tunneling 
contribution from the unpopulated second subband. The 
well-known negative differential conductance (NDC) phe- 
nomenon can be seen if the second subband in the quantum 
well is brought into consideration for electron tunneling. For 
the multisubband case, the NDC occurs at a field strength 
where the first-subband edge in the preceding well is aligned 
with the second-subband edge in the next tilted well (there is 
a very narrow spectral density for both quantum wells be- 

TABLE I. Parameters of GaAs/ALGaj _,,As MQW sample used 
for numerical calculations with well depth V0, well width Lw, 
barrier thickness LB, electron density «2D, 

we^ (barrier) relative 
dielectric constant ew (eB), and well (barrier) electron effective 
mass mw (mB) with me being the free-electron mass. 

(meV) (A) 
LB 
(A) 

"2D 
(1011cm-2) «w «B 

mB 

331 80 300 4.0 12.0 11.2 0.067 0.092 

0163-1829/0/67(24)/245306(10)/$20.00 67 245306-1 20050201 018 
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TABLE II. Calculated parameters of GaAs/A^Ga^AsMQW 
sample used for numerical calculations, including average electron 
effective mass m* with me being the free-electron mass, zero-field 
ground-subband edge E\0), second-subband edge E^, and chemi- 
cal potential jx0(n2Ti,T) measured from if'. 

«* ("Ü £<°> (meV) jff> (meV) ■        Ao (meV) 

0.07 44.5 127.9 14.2 

cause of the very thick barrier between them). On the other 
hand, the NDC phenomenon also occurs in quantum wells 
with a single subband. This is due to a lesser -overlap be- 
tween the quantum-weU quasiparticle spectral functions 
(whose width depends not only on the interwell coupling but 
also on the disorder self-energy) as the applied electric field 
increases when the Fermi energy is not too far from the top 
of the barrier. For the sample with, barrier thickness LB 

= 300 A considered in this paper, the required field strength 
for the multisubband NDC phenomenon is 27:8 kV/cm. 
However, the maximum field strength employed in this study 
is only 1 kV/cm. Consequently, we have only included the 
first subband and neglected the NDC effect in our model 
where the Fermi energy is well below the top of the barrier. 
Moreover, the field-domain effect in an MQW system is ex- 
pected to be very small under low electric fields for coherent- 
tunneling cases or below 40 K for sequential-tunneling cases 
and is neglected in this paper since it becomes significant 
only for a large-tunneling current. The thick-barrier-layer 
sample used in this study is to limit the dark sequential- 
tunneling current to an extremely low amount, which ensures 
a very high detectivity for quantum-well infrared photodetec- 
tors operating at a löw-temperature and/or a low-photon 
background.16 When the sequential tunneling is low, the im- 
purity or defect channels within the barrier would play a 
role.17 However, this only modifies the resistance of the 
sample for sequential tunneling of electrons. The nonadia- 
batic effects discussed in this paper for electron tunneling 
remain the same. The usual self-consistent Hartree model is 
based on the known equilibrium (Fermi-Dirac) distribution 
function of electrons, which can be applied to find electron 
wave functions and energy levels simultaneously in quantum 
wells. The main result of this paper is the derivation of a 
dynamical differential equation for nonadiabatic electrons 
under an ac electric field in quantum wells which is then 
used to find the electron distribution function. This dynami- 
cal equation can be coupled to the self-consistent Hartree 
model to solve for electron wave functions, energy levels, 
and nonadiabatic distributions at the same time. 

The paper is organized as follows. In Sec. n, we introduce 
a shifted Fermi-Dirac model18 for local fluctuations of elec- 
tron kinetic energy and charge density in the quantum well. 
Section m is used to establish a unified theory for both co- 
herent and sequential tunneling of electrons in quantum-well 
and superlattice systems. The previous current-surge model 
is briefly reviewed in Sec. TV. Section V is devoted to the 
derivation of a differential equation based on the self- 
consistent Hartree model with the inclusion of nonadiabatic 
effects on the electron distribution function, and to the estab- 
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lishment of the connection between the current quantum 
theory and the previous current-surge model. Numerical re- 
sults and discussions are given in Sec. VI for the changes of 
current, drift velocity, and density as a function of-time. The 
electron distribution functions at different time's for various 
temperatures, amplitudes of ac electric field, and doping pro- 
files are also shown and compared. The paper is concluded in 
Sec. Vn with some remarks. 

H. SHIFTED FERMI-DIRAC MODEL 

By using a shifted Fermi-Dirac model,18 the nonequilib- 
rium electron distribution function can be written as 

/^(k)=^»(£|k+Ak|+A^), (i) 

where f%°(Ek) is the Fermi function and is given by 

K«m= 1 +exp 
^k-^o(n2D,T) 

knT (2) 

Here, Ek is the electron kinetic energy and T is the tempera- 
ture. ^o(n2D,^) is the chemical potential of the equilibrium 
electron gas relative to the edge of the ground subband in the 
quantum well and is determined by the electron density n2D 

at T. In Eq. (1), LEk represents the local fluctuation of elec- 
tron kinetic energy for electron state |k). Using the accelera- 
tion theorem for the momentum drift Ak introduced in Eq. 
(1) under an applied electric field £b(r), we obtain the fol- 
lowing generalized Boltzmann's equation associated with the 
shifted Fermi-Dirac model in Eq. (1): 

ff"°(k>     % ,,w p ^°(k) ^ dAEk */*)(*)     - 

dt       dEt 

<?T°(k), 
dt I coll. (3) 

where £^t) = Säc+SusmliQ.t) is the time-dependent electric 
field with frequency Ü, = 2ir/Tp, time period Tp, dc ampli- 
tude £&., and ac amplitude £„.. The term on the right-hand 
side of Eq. (3) represents collision contributions. In the limit 
of D, re< 1 with re being the energy-relaxation time of elec- 
trons in the quantum well, we have (dAEk/dt)t=0; but 
(dL1ddt)t=eEtf)IK, where <•••), defines a time average 
over multiple periods of Tp. In this case, only the 
momentum-drift phenomenon occurs. On the other hand we 
find {dLWdt)t= 0 in the limit.of €ITP> 1, with T. being the 
momentum-relaxation time of electrons in the quantum well 
Under this condition, only the energy-drift phenomenon oc- 
curs with (dLEkldt)t=(r{ß)?JA, where <r(fl) is the ac 
conductivity of electrons in the'quantum well.19 

For the shifted Fermi-Dirac model in Eq. (1), there exists 
a local charge-density fluctuation for each electron state Ik) 
defined by '  " 
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dt 
sp^ty- jA^f^-ffiE,)-] 

2e 

e [dAEk 

"V\   dt 

df?(Ek) 
dEk 

(4) 

where V is the volume of the sample. The local charge- 
density fluctuation is a result of the change of the electron 
distribution in energy space with respect to the equilibrium 
state even when n2D *s a constant. 

HI. COHERENT- AND SEQUENTIAL-TUNNELING 
MODELS 

For an MQW system with thick-barrier layers, the adia- 
batic sequential-tunneling current density flowing in the z 
direction (growth direction and perpendicular to the 
quantum-well layers) is found to be20 

(5) 

where LB is the thickness of the barrier between two adjacent 
quantum wells, v\ is the group velocity of qüasibound- or 
continuum-state electrons in the z direction, and T[Ek,£b] is ■ 
the quantum-mechanical transmission of electrons through 
the biased barrier. If Q,ft>l, with rt being the electron 
sequential-tunneling time, T\Eki£^\ has to be found by 
solving a time-dependent Schrödinger equation. Otherwise, 
T[Ek',£b] can be calculated from a static Schrödinger equa- 
tion at each time t if Q,rt<l. We will be only interested in 
the latter case with flrt^ 1 hereafter. 

In the limit of smaÜ barrier thickness and weak field, i.e., 
eE^-^Et-, Eq. (5) yields a coherent-tunneling current that 
takes the same form as that obtained using the regular Bolt- 
zmann's equation (dAEk/dt=0) under the relaxation-time 
approximation: 

2e 
J">{t)=—4Sd»I)2T, v 

df°{Ek) 

dEu (6) 

where we have set T'[£t,£b] = u|T/,/LB«l for scattering- 
limited miniband-state electrons at very low electric field 
(with mean free path vz

krp smaller than LB), and rp is the 
momentum-relaxation time of electrons. Consequently, the 
conductance That is proportional to Jßo(t)/£h becomes inde- 
pendent of £h in this situation. 

If we replace f^°(Ek) to the leading-order approximation 
by the equilibrium value f%°(Ek) for faster electron energy 
relaxation processes due to inelastic scattering of electrons as 
compared to the electron sequential tunneling, and replace 
the electron group velocity v\ by a drift velocity v££b] (a 
statistically averaged group velocity) of electrons in a bulk 
material, Eq. (5) reduces to Levine's sequennal-tunneiing 
model20 

J«>[Sd= ^yvl£h]2 T[_Ek,£hir0\Ek) V  - -- 

(7) 

where v^_£h] = (erp/m*)£h, the momentum-relaxation time 
TP is given by 

m*vs 

(8) 

m* is the effective mass of electrons, vs is the electron satu- 
ration velocity, and £s is the saturation electric field. In Eq. 
(7), JMo[£b]/ef d[£b]- can be equivalently viewed as a three- 
dimensional tunneling-electron density that depends on £b, 
T, and rc2D ■ Obviously, the conductance that is proportional 
to /^[fy/Sh becomes dependent on £b in this situation. 

TV. CURRENT-SURGE MODEL 

From now on, we limit ourselves to an electrical-quantum 
limit where only the ground subband'of the narrow quantum 
well is occupied by electrons at low temperatures and low 
electron densities. The electron kinetic energy of the ground 
subband (measured from the edge) is given by Ek 

= hzk?/2m*. In the current-surge model,10,13-14 we assume 
that AEk is associated with the fluctuation of the chemical 
potential of electrons in the quantum well (independent of 
individual electron state), instead of the local fluctuation of 
electron kinetic energy for each electron state. By writing 
AEk=-Afi=fi0{n2D,T)-fJb(t) for the global chemical- 
potential fluctuation, where /x(t) and ß0(n2D,T) are, respec- 
tively, the transient chemical potential for electron density 
ne(t) and that for an equilibrium electron gas in quantum 
Wells, we get 

dAEk 

dt 

dAEk     d/j, dne 

dt       dn„ dt (9) 

We further introduce a spatially averaged space-charge field 
£naO) which is defined by10-13-14 

AEk=e£^(t)LB, (10) 

where Sjj) measures the reduction of the electron chemical 
potential in quantum wells. If we use Levine's sequential- 
tunneling model in Eq. (7), we find the change in the current 
density due to the existence of this space-charge field E^ff), 

&Jw(t)=J»«-eL*£™[£b+£^-J^[Shl (11) 

where ^»[fj has been given in Eq. (7). In Eq. (11), the first 
term can be viewed as an equivalent capture current flowing 
into the quantum well, while the second term can be re- 
garded as a sequential-tunneling current flowing out of the 
quantum well. 

For a quantum well, the electron density will be constant 
if the conduction currents flowing in and out of the well are 
equal. The variation of the charge density in the well is cre- 
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ated by an imbalance in conduction currents. The charge- 
current conservation law for density fluctuation 8p(t) re- 
quires 

V-<5p(f)-V-£ 8Pk(t) = ALJm{t), dt~r^~'    ' dt   k 
(12) 

where A is the cross-sectional area of the MQW sample. The 
left-hand side of Eq. (12) represents the charge increase in- 
side the well, while the right-hand side of the equation stands 
for the net increase in charges due to a nonadiabatic change 
in the current flowing into the quantum well. Combining 
Eqs. (4), (9), (10), and (12), we finally arrive at the following 
equation derived previously as the current-surge model:10 

d d 
LBCQw^naM =iBCQW^b(0 " AJna(0, (13) 

where the quantum-well capacitance per unit area is CQW 

= (m*e2/irh2)f^\0). Here, we have employed in Eq. (13) 
the fact that {dfiIdni){dnJdt) = eLB{d£h{t)ldt'\ for the ca- 
pacitance coupling of the quantum well to an external ac 
electric field10'13'14 The fast inelastic scattering in quantum 
wells ensures that electrons are in an "equilibrium" state. 
However, Eq. (13) causes a shaking Fermi level for the equi- 
librium state on a macroscopic time scale. 

V. NONADIABATIC EFFECTS IN A SELF-CONSISTENT 
HARTREE MODEL 

As mentioned in the Introduction, electrons in quantum 
wells see only the instantaneous ac electric field during their 
sequential-tunneling process if £lrt< 1; In this case, the 
ground-state electron wave function (j>i{z,t) inside the quan- 
tum well within the self-consistent Hartree model is deter- 
mined by21 

1 h2 d 
2 dz\„*Mdzl   -*$>(')*+tfQw0O m*(z) 

+ VH(V) 4>dz,t)=E1(t)4>l(z,t), (14) 

where E^t) is the time-dependent ground-subband edge, the 
electron effective mass m*(z) takes mw in the well and mB 

in the barrier, and t/QW(z) is zero inside the well but V0 

outside the well. For the adiabatic state, we have p,{t) 
= ßo(n2-D,T), otherwise 8p(f)i=Q for the cases with nona- 
diabatic effects. The Hartree potential VH(z,r) .in Eq. (14) 
can be found from the Poisson equation 

doping     for     the     single     quantum     well,      ne(z,t) 
= \4>\{z,t)\2ne{t) is the density function, and 

neW = i2D+ = *2D+P2DJ      dESf{E,t), 
e Jo 

(16) 

where P2D=(jn^ji'irk2) is the density of states for two- 
dimensional electrons in the quantum well and Sf(E,t) rep- 
resents the local fluctuation of the electron distribution func- 
tion in energy space. Here, the number of electrons in the 
quantum well is not a constant due to the nonadiabatic cur- 
rent flowing. Moreover, we find from Eqs. (4), (9), and (16) 
that 

Lv/jtSp{t) = ep2D^ dE-8f{E,t) 

d f+- 
+ e'LBp2XJ—£b(t)\      a 

<°(i?) 
BE 

(17) 

Applying Eq. (12) and using Eqs. (11) and (17), we find the 
following integral equation for 8f(E,t) by using Levine's 
model in Eq. (7) 

Jo 

i <? ■       , dSb(t)    ' 
eP2D)      dE — Sf(E,t) + e-LBp2T)—^- 

r+co 

dE 
Jo 

dfn\E) 
dE - fr£]wsb]+&«£#]} 

X j^dETlE+E, ,£h;V£[f%°(E) + 8f(E,t) 

-fflE + eEJ.d-SfiE + eStLz.t)-] 

+ vlSb]j-^dET[E+Ef\Sh;V^][ro
a(E) 

[fP2D] 
Uwl 
4°(£+efbLB)] = 0. (18) 

In Eq; (18), Va(z,t) and £Y(r) are written simply as VH and 
Ev The adiabatic quantities V$\z,t) and E(°\t) can be 
obtained by simply setting <?p(r) = 0. in Eq. (15) and 
VH(z,r) = V^\z,t) in Eq. (14). Moreover, the fluctuation of 
the drift velocity Svd[8f] introduced in Eq. (18) is calcu- 
lated to be 

d 

dz 
er(z)—VH(z,f) = ~[ND(z)-ne(z,t)l      (15) 

where donors are assumed completely ionized, and the rela- 
tive dielectric constant er(z) takes ew in the well and eB in 
the barrier. ND(z) in Eq. (15) is the static profile of donor 

Svl8fl = - P2D 

n2D/ J 

+ CO IIE 
dESf(E,t)- 

m w 
(19) 

Finally, Eq. (18) leads us to the dynamical differential equa- 
tion for 8f(E,t), 
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-Sf(E,t)-eLB    df 
dm <°(-g)   i 

dE Iw 

^{vlS^SvlSf\}T[E+Eußb;V^[fTiE)  . 

+ 8f(E,t) -/*>(£+e£^B) - SfiE+eSfaj)-] 

1 + j^vlSh]T[E + Ef\Eb;V^]^(E) 

-ffiE+eEJL^V, (20) 

where the initial condition is chosen to be Sf(E,t) = 0 at t 
= 0 if the ac electric field is applied to the system after t 
= 0. 8f(E,t) has a lower bound that is set by the condition 
SAE,t)+fQ\F) = 0. 

For small Afi, the first term in Eq. (20) can be approxi- 
mated to the leading order by 

<"(£) 
dE (21) 

Similarly, a part of the third term in Eq. (20) can be approxi- 
mated as 

TIE+E, A;VH}[f%0(E) + Sf(E,t) 

-^(E+eS^^-SfiE+eS^j)] 

xLC+Afi(E)-^+^{E+eSbLh)i (22) 

where (8Vg)/Sn2D) = (e2/2e0ewqTF) and qrB 

= (e2/2e0ew)p2D in the Thomas-Fermi model.21 Byrecalling 
^^=~e^rJ,t)L-B, Eq. (20) results in the current-surge 
model in Eq. (13), where 

CQW~ 
e P2D 
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<"(£)' 
dE 

dE 

^l^ = [^)vl^j^dET[E+Ef\sh-V^] 

^{ra\E)-r0\E+e£^)l 

T[E+Ef\Eh-V^-e£^^T{E+E^,Eh+S^,V^l 
and    vl£h-\ + 8vlSf]~vl£h+E^     if    we     set     Tp 
=»LB/(i;F/2) with pF being the electron group velocity at the 
Fermi level. The space-charge field £m(t) introduced by 
Afi=- e£üi(t)LB can be calculated from 

which becomes positive if 8p(t)<0. 
The quantum-mecham'cal transmission coefficient T[E 

+Ei >4;VH] used to evaluate the tunneling current in Eq. 
(7) can be found from the following backward iteration8 at 
each time t 

1 
4>j-i(t) = \2+-[Uj-e£b(t)(j-m + V?{t)-E 

-£^]U/M-^+iM (24) 

for l«7*£tfB where ^-(f) = ^i(^,0, ^f(t)=VE(zj,t), 
Ed-h /2mBA' ,• A=LB/NB and NB is the number of slabs 
(thickness A) within the barrier layer. Here, £/?=0 for j 
= 0 andj=NB+l. Otherwise, U]=V0. The ending bound- 
ary condition of Eq. (24) produces 

<t>NBW 

exp(il\fBk') 
(25) 

where k' = (A/h) yj2mB(E + e£b(t)LB). From the solution of 
Eq. (24) we find the quantum-mechanical transmission of 
electrons from 

TiE+E^V^ — 
'E+e£b(t)LB 

(26) 

where \S\2 = [\a\2 + \b\2 + 2Re(ab*)]/4. The solution of Eq. 
(24) ensures that the transmission coefficient in Eq. (26) de- 
pends on the barrier thickness and height in an exponential 
way. Here, the two complex numbers a and b are defined by. 
the starting boundary condition of Eq. (24) 

4>i{t) 

■(i/2k)(cf,2(t)-4>0(t)) 
(27) 

■withk=(A/h)J2mBE. 

VI. NUMERICAL RESULTS AND DISCUSSION 

We choose a GaAs/Alfi^ _IAs MOW sample for nu- 
merical calculations. Some sample parameters can be found 
in Tables I and II. Other parameters include £dc 

= 0.05kV/cm, us=2X106 cm/sec, £=2 kV/cm, and Tp 

= 4 sec. Different doping profiles have been considered, in- 
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FIG. 1. Calculated time dependence of electron sequential- 
tunneling currents I(t)=J[J*<>[£b] +A JJ^t)] (left scale) for nona- 
diabatic [AJm(t)¥=0, solid curve] and adiabatic [AJna(f)=0, ■ 
dashed curve], and an applied ac electric field £b(r) (right scale) for 
T=40 K and £„.= 1 kV/cm with uniform doping inside GaAs 
quantum wells. 

eluding uniform well doping, center 8 doping, and edge 8 
doping. The temperature Tand the amplitude of the ac elec- 
tric field, £ac, will be given in the figure captions. 

Figure 1 presents the calculated nonadiabatic electron 
sequential-tunneling current IJ^t) = [Jfi°[£b] + AJJit)~\A 
(solid curve) and the adiabatic sequential-tunneling current 
4(0=^°[£b]-4 (dashed curve) as a function of time t (left 
scale) for the MQW sample at T=40 K, £„.= 1 kV/cm, and 
with vmiform doping inside the GaAs quantum wells. For 
comparison, the applied ac electric field £b(t) (right scale) is 
also plotted in the same figure. When £b(t) approaches its 
maximum (i.e., t=\ sec), we find a small enhancement in 
/^(f) with respect to 7a(r) and the saturation of I^Jf) due to 
the large reduction in electron density inside the quantum 
wells. On the other hand, we find a large enhancement in 
Ijjt) due to the large increase of electron density inside the 
quantum wells when £b(r) approaches its minimum (i.e., t 
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=3 sec). These features are a result of the induced space- 
charge field EvJJ). 

The reduction of electron .population around E 
= /i0(»2D>^) can- be described by the space-charge field 
£na(0 defined in Eq. (23). We display £m(t) (solid curve, left 
scale) in Fig. 2(a), along with £b(t) (dashed curve, right 
scale) as functions of t for uniform doping. From the figure 
we see that S^t) and £b(i) are nearly in phase with each 
other, except for a slight phase shift. This is a direct result of 
oscillations in the change of the charge density Sp(t) in the 
quantum well, as shown in Fig. 2(b), where both 8p(t) (solid 
curve, left scale) and 8v£Sf] (dashed curve, right scale) are 
plotted as functions oft. Since £^(t) describes the reduction 
of charge density in the quantum well, we expect 8p{f) to be 
nearly out of phase withi^f) or £b(t), as can be seen from 
Figs. 2(a) and 2(b). The situations with 8p(t)<0 and 
Sp(t)>0 indicate electrons moving out of and into the quan- 
tum well, respectively. Moreover, 8v£8f] will be in phase 
with 5m(f) since it is proportional to — Sf{E,t) that itself is 
proportional to £na(0- 

Figure 3 displays the calculated adiabatic Hartree poten- 
tial [in panel (a)] and the change of Hartree potential [in 
panel (b)] in the nonadiabatic state from the Poisson equation 
(15) as functions of position z for different doping profiles at 
t/Tp=0.25. Here, T=40 K, £^=1 kV/cm, and the quantum 
well sits in the range of 300 A=£z«=380 A. From Fig. 3(a) 
we find that the absolute value of the adiabatic Hartree po- 
tential becomes smallest for the uniform-doping case. The 
center 8 doping in the quantum well causes the conduction 
band edge to bend down at the well center, while the edge 8 
doping makes the conduction band edge bend up there, äs 
shown in Fig. 3(a). With the total potential seen by the elec- 
trons being the sum of the adiabatic Hartree potential 
V$(z,t) plus the phange AFH(z,f) plus the quantum-well 
potential Z7QW(z), the out-of-phase nature of Figs. 3(a) and 
3(b) will result in the band bending seen in Fig. 3(a) being 
substantially suppressed by the nonadiabatic effects in Fig. 
3(b). However, the nonadiabatic effects with edge 8 doping 
produces two positive spikes [solid curve in Fig. 3(b)] at the 
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FIG. 2. Time dependence of a calculated space-charge field £na(f) (solid curve, left scale) and an'applied ac electric field £b(f) (dashed 
curve, right scale) in panel (a), as well as time dependence of calculated charge-density fluctuation Sp(t) (solid curve, left scale) and change 
of drift velocity Sv £ Sf] (dashed curve, right' scale) in panel (b) for T= 40 K and £ac= 1 kV/cm with uniform doping inside quantum wells. 
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(A) 
FIG. 3. Calculated position dependence of adiabatic Hartree potentials V$\z,t) in-panel (a) and change of nonadiabatic Hartree 

potentials A V^z,t) in panel (b) at f/T^O.25, with T=40 K and E^ 1 kV/cm for edge S doping (solid curves), center S doping (dashed 
curves), and uniform doping (dotted curves) in the quantum well. 

edges of the quantum well and thus will reduce the electron 
sequential-tunneling current. 

Figure 4 indicates the effects of an ac electric-field 
strength S^ [in panel (a)] and temperature T [in panel (b)] on 
the charge-density fluctuations Sp(t) as a function of f in a 
uniformly doped quantum well. In Fig. 4(a) we find that 
fluctuations Sp(j) increase with E^ at T=40 K, with the 
negative peak (electrons removed, from the quantum well) 
being saturated at 8^=5 kV/cm. In Fig. 4(b), as T increases 
Sp{f) is enhanced when it is negative (electrons removed 
from the quantum well), but reduced when it is positive 
(electrons added to the well) at E^ 1 kV/cm. 

Figure 4 only shows us the global fluctuation of the 
charge density in the quantum well. In order to gain further 
insight into the local change in the electron distribution func- 
tion, we display Sf(E,t) in Fig. 5 at t/Tp = 0.25 with uni- - 
form doping for different values of £ac [in panel (a)] and T ■ 

[in panel (b)]. From Fig. 5(b) it is clear that Sf(E,t) always 
shows a negative nunimum at /£0(

n2D >T)» since it is propor- 
tional to df%\E)/dE. Because the Fermi surface broadens 
with increasing T, we find from Fig. 5(b) that the negative 
minimum is partially suppressed and broadened (solid curve) 
when T=40K as compared to that (dashed curve) at T. 
- 20 K. From Fig. 5(a) we find that the negative nunimum is 
enhanced when E^, is increased. The cusp (dashed curve) in 
Fig. 5(a) is a result of zero occupation of electrons in a 
specific state with kinetic energy E in the ground subband. 

Figures 6(a) and 6(b) present nonadiabatic effects on the 
Hartree potentials in the uniformly doped quantum well at 
7=40 K and Ew= 1 kV/cm. From Fig. 6(a) we find that the 
positive peak in the adiabatic Fiartree potential F^0)(z,f) 
(dashed curve) at the center of the quantum well is greatly 
suppressed by the nonadiabatic effects (solid curve) at tIT 
= 0.25, leaving two positive spikes at the edges of the quan- 
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FIG, 4. Time dependence of calculated charge-density fluctuations Sp(t) in the uniformly doped quantum well . In panel (a) we set 
7/=40 K with £„.= 1 kV/cm (solid curve) and £ac= 5 kV/cm (dashed curve). In panel (b), we set £ac= 1 kV/cm with T=40 K (solid curve) 
and T= 20 K (dashed curve). 
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FIG 5. Calculated change of nonadiabatic distribution functions Sf{E,t) at t/Tp=02S for electrons in the uniformly doped quantum 
well, ii panel (a), we set r=40 K with ^=1 kV/cm K (solid curve) and 5ao=5 kV/cm (dashed curve). In panel (b), we set £L 
= 1 kV/cm with T=40 K (sohd curve) and 7>20 K (dashed curve). 

turn well. Figure 6(b) shows the comparison between Hartree 
potentials when the electrons in the quantum well are either 
removed (r/rp = 0.25, solid curve) or added (f/r =0.75, 
dashed curve). We find from Fig. 6(b) that the two positive 
spikes at the edges of the quantum well are suppressed, but 
two negative spikes are generated when electrons are added 
to the well. 

Finally, we display in Fig. 1 f{E,i) at r/7^ = 0.25 (dotted 
curve) and 0.75 (dashed curve), as well as the equilibrium 
distribution ffl(E) (solid curve) in panel (a) and 

togiol-fnaCOl as a- function of £b(r) in panel (b). From Fig. 
7(a) we see f(E,t) resembles the equüibrium distribution 
f^\E) with a shaking Fermi level with time (shaking up at 
t/Tp=0.75 and shaking down at t/Tp=02S). Compared 
with the adiabatic electron sequential-tunneling current [thin 
solid curve with AJna(f) = 0] in Fig. 7(b), the symmetry of 
logiol4a(0l with respect to the positive (electrons being re- 

moved) and negative (electrons being added) extreme values 
of £t>(0 is broken in the case with nonadiabatic effects (thick 
solid curve). A small offset10-13-14 of logl0\lBS_(t)\ with respect 
to £b(f) = 0 can be seen by comparing thick and thin solid 
curves. 

Vn. CONCLUSIONS AND REMARKS 

In conclusion, we have derived a dynamical differential 
equation for the nonadiabatic electron distribution function 
with sequential-tunneling current flowing through an MQW 
system. Using this equation, we generalized the self- 
consistent Hartree model for the calculation of the electronic 
states with the inclusion of nonadiabatic effects in a quantum 
well. "We have also studied the effects of different doping 
profiles, temperatures,.and amplitudes of applied ac electric 
field on the nonadiabatic electron sequential tunneling. Fi- 
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FIG. 6. Calculated position dependence of Hartree potentials for nonadiabatic (solid curve) and adiabatic (dashed curve) in panel (a) at" 
T-40 K and £^= 1 kV/cm with uniform doping inside the quantum well, and nonadiabatic Hartree potentials V„(z t) in panel (b) for 
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nally, we have connected the present quantum-statistical 
theory to the previously proposed current-surge model with a 
leading-order approximation. 

In this paper, only the self-consistent Hartree model is 
employed. The exchange interaction between electrons and 
the field-domain effect are expected to be very small22 at T 
=40 K and £'aö= 1 kV/cm and have been neglected. 

The time scale for observing the nonadiabatic effects re- 
quires 

re<Tt<t<RtC(^A    2TT/Q, 

where R,= {L^IA){3J^[Sh-\ld£hTy is'the differential tun- 
neling resistance, depending on £b and T. Here, Cl re< 1 ex- 
cludes the energy-drift effect, leaving only the momentum- 
drift effect in the system Further, ü,rt<\ ensures that the 
electrons see only an instantaneous ac electric field during 
the sequential-tunneling process. Finally, t<RtCq^A en- 

sures the observation of the nonadiabatic effects inside the 
quantum well. Assuming re= 1 ps corresponds to a homoge- 
neous energy-level broadening of 1 meV, leading to XI 
<U0 Hz from IIre< 1. Therefore, only a momentum drift 
exists for low ac frequency O-1 Hz. The tunneling time rt 

can be estimated from T,~e/[^[£JX]. For a superlative, 
we take J^[fb]4=l fiA, leading to T,= 0.1 ps and O 
«101 Hz from flr^l. For an MQW system, we take 
J/l°[SQA= 10 pA, leading to T,= 10ns and ü<§108 Hz. 
This justifies the calculation of the quantum-mechanical 
transmission of electrons through a biased barrier using the 
time-independent Schrödinger equation in an MQW system 
with O— 1 Hz. Difficulties in observing the nonadiabatic ef- 
fects may come from the small quantum-well capacitance 
CQW.X~ 10 pF in the requirement r<i?,CQWA For a super- 
lattice, we take _R,= 104 ohm, and men r<10~7 sec is re- 
quired (impossible to observe with 0;-1 Hz). For an MQW 
system, on the other hand, we take Rt=10u ohm, which 
implies t<\ sec (very easy to observe with fl~l Hz). 
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